Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Signal Transduct Target Ther ; 7(1): 69, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1721495

RESUMEN

Emerging SARS-CoV-2 variants and the gradually decreasing neutralizing antibodies over time post vaccination have led to an increase in incidents of breakthrough infection across the world. To investigate the potential protective effect of the recombinant protein subunit COVID-19 vaccine targeting receptor-binding domain (RBD) (PS-RBD) and whole inactivated virus particle vaccine (IV) against the variant strains, in this study, rhesus macaques were immunized with PS-RBD or IV vaccine, followed by a Beta variant (B.1.351) challenge. Although neutralizing activity against the Beta variant was reduced compared with that against the prototype, the decreased viral load in both upper and lower respiratory tracts, milder pathological changes, and downregulated inflammatory cytokine levels in lung tissues after challenge demonstrated that PS-RBD and IV still provided effective protection against the Beta variant in the macaque model. Furthermore, PS-RBD-induced macaque sera possessed general binding and neutralizing activity to Alpha, Beta, Delta, and Omicron variants in our study, though the neutralizing antibody (NAb) titers declined by varying degrees, demonstrating potential protection of PS-RBD against current circulating variants of concern (VOCs). Interestingly, although the IV vaccine-induced extremely low neutralizing antibody titers against the Beta variant, it still showed reduction for viral load and significantly alleviated pathological change. Other correlates of vaccine-induced protection (CoP) like antibody-dependent cellular cytotoxicity (ADCC) and immune memory were both confirmed to be existing in IV vaccinated group and possibly be involved in the protective mechanism.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19 , COVID-19 , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Animales , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , Humanos , Macaca mulatta , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/farmacología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología
2.
JCI Insight ; 7(5)2022 03 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1662370

RESUMEN

Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant. Neutralizing antibody levels in the HCs were sustained over time against the vaccine parent virus but decreased against the Alpha variant, whereas IgG titers and T cell responses against the parent virus and Alpha variant declined over time. Both partially and fully vaccinated patients with symptomatic infections had lower virus neutralizing antibody levels against the parent virus than the HCs, similar IgG antibody titers, and similar virus-specific T cell responses measured by IFN-γ. Compared with HCs, neutralization activity against the Alpha variant was lower in the partially vaccinated infected patients and tended to be lower in the fully vaccinated infected patients. In this cohort of breakthrough infections, parent virus neutralization was the superior predictor of breakthrough infections with the Alpha variant of SARS-CoV-2.


Asunto(s)
Inmunidad Adaptativa , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/farmacología , COVID-19/virología , SARS-CoV-2/inmunología , Vacunación/métodos , Vacunas Sintéticas/farmacología , Vacunas de ARNm/farmacología , Adulto , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Vigilancia de la Población , Estudios Retrospectivos , Estados Unidos/epidemiología , Adulto Joven
4.
J Immunother Cancer ; 9(9)2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1503841

RESUMEN

BACKGROUND: MVA-BN-brachyury-TRICOM is a recombinant vector-based therapeutic cancer vaccine designed to induce an immune response against brachyury. Brachyury, a transcription factor overexpressed in advanced cancers, has been associated with treatment resistance, epithelial-to-mesenchymal transition, and metastatic potential. MVA-BN-brachyury-TRICOM has demonstrated immunogenicity and safety in previous clinical trials of subcutaneously administered vaccine. Preclinical studies have suggested that intravenous administration of therapeutic vaccines can induce superior CD8+ T cell responses, higher levels of systemic cytokine release, and stronger natural killer cell activation and proliferation. This is the first-in-human study of the intravenous administration of MVA-BN-brachyury-TRICOM. METHODS: Between January 2020 and March 2021, 13 patients were treated on a phase 1, open-label, 3+3 design, dose-escalation study at the National Institutes of Health Clinical Center. The study population was adults with advanced solid tumors and was enriched for chordoma, a rare sarcoma of the notochord that overexpresses brachyury. Vaccine was administered intravenously at three DLs on days 1, 22, and 43. Blood samples were taken to assess drug pharmacokinetics and immune activation. Imaging was conducted at baseline, 1 month, and 3 months post-treatment. The primary endpoint was safety and tolerability as determined by the frequency of dose-limiting toxicities; a secondary endpoint was determination of the recommended phase 2 dose. RESULTS: No dose-limiting toxicities were observed and no serious adverse events were attributed to the vaccine. Vaccine-related toxicities were consistent with class profile (ie, influenza-like symptoms). Cytokine release syndrome up to grade 2 was observed with no adverse outcomes. Dose-effect trend was observed for fever, chills/rigor, and hypotension. Efficacy analysis of objective response rate per RECIST 1.1 at the end of study showed one patient with a partial response, four with stable disease, and eight with progressive disease. Three patients with stable disease experienced clinical benefit in the form of improvement in pain. Immune correlatives showed T cell activation against brachyury and other tumor-associated cascade antigens. CONCLUSIONS: Intravenous administration of MVA-BN-brachyury-TRICOM vaccine was safe and tolerable. Maximum tolerated dose was not reached. The maximum administered dose was 109 infectious units every 3 weeks for three doses. This dose was selected as the recommended phase 2 dose. TRIAL REGISTRATION NUMBER: NCT04134312.


Asunto(s)
Administración Intravenosa/métodos , Vacunas contra el Cáncer/uso terapéutico , Proteínas Fetales/uso terapéutico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Proteínas de Dominio T Box/uso terapéutico , Vacunas contra el Cáncer/farmacología , Femenino , Proteínas Fetales/farmacología , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Dominio T Box/farmacología , Vacunas Sintéticas/farmacología , Vacunas Sintéticas/uso terapéutico
5.
Elife ; 102021 10 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1464010

RESUMEN

While mRNA vaccines are proving highly efficacious against SARS-CoV-2, it is important to determine how booster doses and prior infection influence the immune defense they elicit, and whether they protect against variants. Focusing on the T cell response, we conducted a longitudinal study of infection-naïve and COVID-19 convalescent donors before vaccination and after their first and second vaccine doses, using a high-parameter CyTOF analysis to phenotype their SARS-CoV-2-specific T cells. Vaccine-elicited spike-specific T cells responded similarly to stimulation by spike epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms of cell numbers and phenotypes. In infection-naïve individuals, the second dose boosted the quantity and altered the phenotypic properties of SARS-CoV-2-specific T cells, while in convalescents the second dose changed neither. Spike-specific T cells from convalescent vaccinees differed strikingly from those of infection-naïve vaccinees, with phenotypic features suggesting superior long-term persistence and ability to home to the respiratory tract including the nasopharynx. These results provide reassurance that vaccine-elicited T cells respond robustly to emerging viral variants, confirm that convalescents may not need a second vaccine dose, and suggest that vaccinated convalescents may have more persistent nasopharynx-homing SARS-CoV-2-specific T cells compared to their infection-naïve counterparts.


Vaccination is one of the best ways to prevent severe COVID-19. Two doses of mRNA vaccine protect against serious illness caused by the coronavirus SARS-CoV-2. They do this, in part, by encouraging the immune system to make specialised proteins known as antibodies that recognise the virus. Most of the vaccine research so far has focussed on these antibodies, but they are only one part of the immune response. Vaccines also activate immune cells called T cells. These cells have two main roles, coordinating the immune response and killing cells infected with viruses. It is likely that they play a key role in preventing severe COVID-19. There are many kinds of T cells, each with a different role. Currently, the identity and characteristics of the T cells that protect against COVID-19 is unclear. Different types of T cells have unique proteins on their surface. Examining these proteins can reveal details about how the T cells work, which part of the virus they recognise, and which part of the body they protect. A tool called cytometry by time of flight allows researchers to measure these proteins, one cell at a time. Using this technique, Neidleman, Luo et al. investigated T cells from 11 people before vaccination and after their first and second doses. Five people had never had COVID-19 before, and six had already recovered from COVID-19. Neidleman, Luo et al. found that the T cells recognizing SARS-CoV-2 in the two groups differed. In people who had never had COVID-19 before, the second dose of vaccine improved the quality and quantity of the T cells. The same was not true for people who had already recovered from COVID-19. However, although their T cells did not improve further after a second vaccine dose, they did show signs that they might offer more protection overall. The proteins on the cells suggest that they might last longer, and that they might specifically protect the nose, throat and lungs. Neidleman, Luo et al. also found that, for both groups, T cells activated by vaccination responded in the same way to different variants of the virus. This work highlights the importance of getting both vaccine doses for people who have never had COVID-19. It also suggests that vaccination in people who have had COVID-19 may generate better T cells. Larger studies could show whether these patterns remain true across the wider population. If so, it is possible that delivering vaccines to the nose or throat could boost immunity by mimicking natural infection. This might encourage T cells to make the surface proteins that allow them to home to these areas.


Asunto(s)
Vacunas contra la COVID-19/farmacología , COVID-19/inmunología , SARS-CoV-2/inmunología , Linfocitos T/efectos de los fármacos , Vacunas Sintéticas/farmacología , Adulto , Anciano , COVID-19/prevención & control , COVID-19/virología , Femenino , Humanos , Inmunización Secundaria , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Adulto Joven
6.
Nat Rev Drug Discov ; 20(11): 817-838, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1371218

RESUMEN

Over the past several decades, messenger RNA (mRNA) vaccines have progressed from a scepticism-inducing idea to clinical reality. In 2020, the COVID-19 pandemic catalysed the most rapid vaccine development in history, with mRNA vaccines at the forefront of those efforts. Although it is now clear that mRNA vaccines can rapidly and safely protect patients from infectious disease, additional research is required to optimize mRNA design, intracellular delivery and applications beyond SARS-CoV-2 prophylaxis. In this Review, we describe the technologies that underlie mRNA vaccines, with an emphasis on lipid nanoparticles and other non-viral delivery vehicles. We also overview the pipeline of mRNA vaccines against various infectious disease pathogens and discuss key questions for the future application of this breakthrough vaccine platform.


Asunto(s)
COVID-19/prevención & control , Control de Enfermedades Transmisibles , Vacunas Sintéticas , COVID-19/epidemiología , Ensayos Clínicos como Asunto , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/tendencias , Diseño de Fármacos , Desarrollo de Medicamentos/métodos , Humanos , ARN Mensajero/genética , SARS-CoV-2 , Vacunas Sintéticas/clasificación , Vacunas Sintéticas/farmacología
7.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1387607

RESUMEN

The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Mycobacterium tuberculosis Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants Pam2Cys-SK4 or Pam3Cys-SK4 These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4+ T cell responses against ESAT6 and provided significant protection in the lungs from virulent M. tuberculosis aerosol challenge when administered to the pulmonary mucosa of mice. The flexible synthetic platform we describe, which allows incorporation of adjuvants to multiantigenic vaccines, represents a general approach that can be applied to rapidly assess vaccination strategies in preclinical models for a range of diseases, including against novel pandemic pathogens such as SARS-CoV-2.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/farmacología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Vacunas Conjugadas/farmacología , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Vacuna BCG/farmacología , Proteínas Bacterianas , Linfocitos T CD4-Positivos/inmunología , COVID-19/prevención & control , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/inmunología , Receptor Toll-Like 2/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunas Conjugadas/inmunología , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología
9.
Biomed Pharmacother ; 142: 111953, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-1322006

RESUMEN

Currently, there are over 230 different COVID-19 vaccines under development around the world. At least three decades of scientific development in RNA biology, immunology, structural biology, genetic engineering, chemical modification, and nanoparticle technologies allowed the accelerated development of fully synthetic messenger RNA (mRNA)-based vaccines within less than a year since the first report of a SARS-CoV-2 infection. mRNA-based vaccines have been shown to elicit broadly protective immune responses, with the added advantage of being amenable to rapid and flexible manufacturing processes. This review recapitulates current advances in engineering the first two SARS-CoV-2-spike-encoding nucleoside-modified mRNA vaccines, highlighting the strategies followed to potentiate their effectiveness and safety, thus facilitating an agile response to the current COVID-19 pandemic.


Asunto(s)
Ingeniería Biomédica , Vacunas contra la COVID-19 , COVID-19 , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Ingeniería Biomédica/métodos , Ingeniería Biomédica/tendencias , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/clasificación , Vacunas contra la COVID-19/farmacología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Inmunogenicidad Vacunal , Liposomas/farmacología , Nanopartículas , Nucleósidos/farmacología , Nucleósidos/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas/farmacología
10.
Hum Gene Ther ; 32(11-12): 541-562, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1216585

RESUMEN

Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.


Asunto(s)
Vacunas contra la COVID-19/farmacología , Vectores Genéticos , Vacunas Atenuadas/farmacología , Vacunas Sintéticas/farmacología , Proteínas Estructurales Virales/química , Adenoviridae/genética , Terapia Genética/métodos , Vectores Genéticos/química , Vectores Genéticos/genética , Humanos , Lentivirus/genética , SARS-CoV-2/genética , Vacunas de ADN/farmacología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo
12.
Mol Ther ; 29(3): 1174-1185, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-985497

RESUMEN

Self-amplifying RNA (saRNA) is a cutting-edge platform for both nucleic acid vaccines and therapeutics. saRNA is self-adjuvanting, as it activates types I and III interferon (IFN), which enhances the immunogenicity of RNA vaccines but can also lead to inhibition of translation. In this study, we screened a library of saRNA constructs with cis-encoded innate inhibiting proteins (IIPs) and determined the effect on protein expression and immunogenicity. We observed that the PIV-5 V and Middle East respiratory syndrome coronavirus (MERS-CoV) ORF4a proteins enhance protein expression 100- to 500-fold in vitro in IFN-competent HeLa and MRC5 cells. We found that the MERS-CoV ORF4a protein partially abates dose nonlinearity in vivo, and that ruxolitinib, a potent Janus kinase (JAK)/signal transducer and activator of transcription (STAT) inhibitor, but not the IIPs, enhances protein expression of saRNA in vivo. Both the PIV-5 V and MERS-CoV ORF4a proteins were found to enhance the percentage of resident cells in human skin explants expressing saRNA and completely rescued dose nonlinearity of saRNA. Finally, we observed that the MERS-CoV ORF4a increased the rabies virus (RABV)-specific immunoglobulin G (IgG) titer and neutralization half-maximal inhibitory concentration (IC50) by ∼10-fold in rabbits, but not in mice or rats. These experiments provide a proof of concept that IIPs can be directly encoded into saRNA vectors and effectively abate the nonlinear dose dependency and enhance immunogenicity.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Inmunogenicidad Vacunal , Biosíntesis de Proteínas/efectos de los fármacos , Vacunas Sintéticas/farmacología , Proteínas del Envoltorio Viral/administración & dosificación , Animales , Línea Celular , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Virus de la Encefalitis Equina Venezolana/inmunología , Virus de la Encefalitis Equina Venezolana/patogenicidad , Fibroblastos , Regulación de la Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunoglobulina G/biosíntesis , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/genética , Quinasas Janus/inmunología , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , FN-kappa B/genética , FN-kappa B/inmunología , Nitrilos , Virus de la Parainfluenza 5/efectos de los fármacos , Virus de la Parainfluenza 5/inmunología , Virus de la Parainfluenza 5/patogenicidad , Pirazoles/farmacología , Pirimidinas , Conejos , Virus de la Rabia/efectos de los fármacos , Virus de la Rabia/inmunología , Virus de la Rabia/patogenicidad , Ratas , Factores de Transcripción STAT/antagonistas & inhibidores , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/inmunología , Transducción de Señal , Vacunas Sintéticas/biosíntesis , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
14.
Mol Biol Rep ; 47(12): 9939-9949, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-969167

RESUMEN

The outbreak of a novel coronavirus namely SARS-CoV-2, which first emerged from Wuhan, China, has wreaked havoc not only in China but the whole world that now has been engulfed in its wrath. In a short lapse of time, this virus was successful in spreading at a blistering pace throughout the globe, hence raising the flag of pandemic status. The mounting number of deaths with each elapsing day has summoned researchers from all around the world to play their part in driving this SARS-CoV-2 pandemic to an end. As of now, multiple research teams are immersed in either scrutinizing various antiviral drugs for their efficacy or developing different types of vaccines that will be capable of providing long-term immunity against this deadly virus. The mini-review sheds light on the possible approaches that can be undertaken to curb the COVID-19 spread. Possible strategies comprise viral vector-based, nucleic acid-based, protein-based, inactivated and weakened virus vaccines; COVID-19 vaccine being developed by deploying Hyleukin-7 technology; plant-based chimeric protein and subunit vaccines; humanized nano-bodies and human antibodies; intravenous immunoglobulin (IVIG) infusion therapy; inhibitors for ACE-2, Angiotensin 1 receptor (AT1R), complement system, viral proteins, host cell protease and endocytosis; shield immunity; IL-6R, NKG2A and hACE2-SARS-CoV-2-RBD interaction blocking monoclonal antibodies; SARS-CoV RdRp-based drugs, traditional Chinese medicine, repositioned and anti-viral drugs. These vaccines and drugs are currently being screened in the clinical trials as several of them have manifested positive results, hence increasing the probability of becoming one of the potential treatments for this disease.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Vacunas contra la COVID-19/farmacología , COVID-19/prevención & control , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología , Ensayos Clínicos como Asunto , Reposicionamiento de Medicamentos , Humanos , Virus de la Bronquitis Infecciosa/inmunología , Trasplante de Células Madre Mesenquimatosas/métodos , ARN Mensajero/inmunología , Proteínas Recombinantes/genética , Anticuerpos de Dominio Único/farmacología , Vacunas Atenuadas/farmacología , Vacunas de Subunidad/farmacología , Vacunas Sintéticas/farmacología
15.
Vaccine ; 38(50): 7892-7896, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: covidwho-899644

RESUMEN

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M™ adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988).


Asunto(s)
Vacunas contra la COVID-19/farmacología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Adyuvantes Inmunológicos/farmacología , Adolescente , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Neutralizantes , COVID-19/inmunología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Femenino , Humanos , Sueros Inmunes/efectos de los fármacos , Sueros Inmunes/inmunología , Macaca fascicularis , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología , Células Vero , Carga Viral , Adulto Joven
16.
Cell Host Microbe ; 28(3): 465-474.e4, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: covidwho-710174

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of human infections, and an effective vaccine is critical to mitigate coronavirus-induced disease 2019 (COVID-19). Previously, we developed a replication-competent vesicular stomatitis virus (VSV) expressing a modified form of the SARS-CoV-2 spike gene in place of the native glycoprotein gene (VSV-eGFP-SARS-CoV-2). Here, we show that vaccination with VSV-eGFP-SARS-CoV-2 generates neutralizing immune responses and protects mice from SARS-CoV-2. Immunization of mice with VSV-eGFP-SARS-CoV-2 elicits high antibody titers that neutralize SARS-CoV-2 and target the receptor binding domain that engages human angiotensin-converting enzyme-2 (ACE2). Upon challenge with a human isolate of SARS-CoV-2, mice that expressed human ACE2 and were immunized with VSV-eGFP-SARS-CoV-2 show profoundly reduced viral infection and inflammation in the lung, indicating protection against pneumonia. Passive transfer of sera from VSV-eGFP-SARS-CoV-2-immunized animals also protects naive mice from SARS-CoV-2 challenge. These data support development of VSV-SARS-CoV-2 as an attenuated, replication-competent vaccine against SARS-CoV-2.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Virus de la Estomatitis Vesicular Indiana/genética , Vacunas Virales/genética , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Peptidil-Dipeptidasa A/genética , Neumonía Viral/inmunología , Neumonía Viral/virología , Receptores Virales/genética , SARS-CoV-2 , Investigación Biomédica Traslacional , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/farmacología , Células Vero , Virus de la Estomatitis Vesicular Indiana/inmunología , Vacunas Virales/inmunología , Vacunas Virales/farmacología
17.
Nanomedicine (Lond) ; 15(21): 2085-2102, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-690164

RESUMEN

The COVID-19 pandemic caused by the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) puts the world in an unprecedented crisis, leaving behind huge human losses and deep socioeconomic damages. Due to the lack of specific treatment against SARS-CoV-2, effective vaccines and antiviral agents are urgently needed to properly restrain the COVID-19 pandemic. Repositioned drugs such as remdesivir have revealed a promising clinical efficacy against COVID-19. Interestingly, nanomedicine as a promising therapeutic approach could effectively help win the battle between coronaviruses (CoVs) and host cells. This review discusses the potential therapeutic approaches, in addition to the contribution of nanomedicine against CoVs in the fields of vaccination, diagnosis and therapy.


Asunto(s)
Betacoronavirus , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/terapia , Nanomedicina/métodos , Neumonía Viral/diagnóstico , Neumonía Viral/terapia , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Reposicionamiento de Medicamentos , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Nanotecnología/métodos , Pandemias/prevención & control , Neumonía Viral/epidemiología , SARS-CoV-2 , Vacunas Sintéticas/farmacología , Vacunas Virales/farmacología , Tratamiento Farmacológico de COVID-19
18.
SLAS Discov ; 25(10): 1097-1107, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-658373

RESUMEN

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), was first reported in Wuhan, China, in December 2019. Since then, the virus has stretched its grip to almost all the countries in the world, affecting millions of people and causing enormous casualties. The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2019. As of June 12, 2020, almost 7.30 million people have already been infected globally, with 413,000 reported casualties. In the United States alone, 2.06 million people have been infected and 115,000 have succumbed to this pandemic. A multipronged approach has been launched toward combating this pandemic, with the main focus on exhaustive screening, developing efficacious therapies, and vaccines for long-term immunity. Several pharmaceutical companies in collaboration with various academic institutions and governmental organizations have started investigating new therapeutics and repurposing approved drugs so as to find fast and affordable treatments against this disease. The present communication is aimed at highlighting the efforts that are currently underway to treat or prevent SARS-CoV-2 infection, with details on the science, clinical status, and timeline for selected investigational drugs and vaccines. This article is going to be of immense help to the scientific community and researchers as it brings forth all the necessary clinical information of the most-talked-about therapeutics against SARS-CoV-2. All the details pertaining to the clinical status of each therapeutic candidate have been updated as of June 12, 2020.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Vacunas contra la COVID-19/farmacología , Reposicionamiento de Medicamentos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Amidas/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , COVID-19/prevención & control , Cloroquina/farmacología , Ensayos Clínicos como Asunto , Ciclopropanos , Evaluación Preclínica de Medicamentos , Humanos , Isoindoles , Lactamas/farmacología , Lactamas Macrocíclicas , Ratones Transgénicos , Prolina/análogos & derivados , Pirazinas/farmacología , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfonamidas/farmacología , Vacunas Sintéticas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA